# Gaussian ( _x ; _height ; _center ; _sigma )

Gaussian function to enable a controllable bell shaped graph.

 ThomasSeidler - Show more from this author The Good Book Company Ltd http://www.thegoodbook.co.uk

Sample input:
Let ( [ _height = 1.2 ;
_sigma = .35;
_center = 1.1;
_offset = -.17575 ];

Limit ( 0 ; 1 ; Gaussian ( 0 ; _height ; _center ; _sigma ) + _offset ) & " || " &
Limit ( 0 ; 1 ; Gaussian ( .1; _height ; _center ; _sigma ) + _offset) & " || " &
Round ( Gaussian ( .2 ; _height ; _center ; _sigma )+ _offset ; 2) & " || " &
Round ( Gaussian ( .5 ; _height ; _center ; _sigma ) + _offset; 2) & " || " &
Round ( Gaussian ( .9 ; _height ; _center ; _sigma )+ _offset ; 2 )& " || " &
Round ( Gaussian ( 1 ; _height ; _center ; _sigma )+ _offset ; 2 )

)
Sample output:
0 || 0 || .05 || .4 || .93 || 1

Function definition: (Copy & paste into FileMaker's Edit Custom Function window)

If you need to see the graph you plot: http://www.walterzorn.com/grapher/grapher_e.htm

I wanted a nice smooth colour shift from red to green, not going via murky brown, but via brighter shades of orange...

You need some heavy curve control to do that! ;) The example input there is the curve i use for the green (*255!)... i think it works nicely (i used (1-(x^5))*255 for the red (blue=0)).

No doubt it has other uses in statistical analysis etc, though there are functions already up there on that front.